On Sawollek polynomials of checkerboard colorable virtual links
نویسندگان
چکیده
منابع مشابه
On the Jones polynomials of checkerboard colorable virtual knots
In this paper we study the Jones polynomials of virtual links and abstract links. It is proved that a certain property of the Jones polynomials of classical links is valid for virtual links which admit checkerboard colorings.
متن کاملOn Alexander-conway Polynomials for Virtual Knots and Links
A polynomial invariant of virtual links, arising from an invariant of links in thickened surfaces introduced by Jaeger, Kauuman, and Saleur, is deened and its properties are investigated. Examples are given that the invariant can detect chirality and even non-invertibility of virtual knots and links. Furthermore, it is shown that the polynomial satisses a Conway-type skein relation { in contras...
متن کاملOn Alexander-Conway Polynomials for Virtual Knots and Links
A polynomial invariant of virtual links, arising from an invariant of links in thickened surfaces introduced by Jaeger, Kauffman, and Saleur, is defined and its properties are investigated. Examples are given that the invariant can detect chirality and even non-invertibility of virtual knots and links. Furthermore, it is shown that the polynomial satisfies a Conway-type skein relation – in cont...
متن کاملOn links with cyclotomic Jones polynomials
We show that if {Ln} is any infinite sequence of links with twist number τ (Ln) and with cyclotomic Jones polynomials of increasing span, then lim sup τ (Ln) = ∞ . This implies that any infinite sequence of prime alternating links with cyclotomic Jones polynomials must have unbounded hyperbolic volume. The main tool is the multivariable twist–bracket polynomial, which generalizes the Kauffman b...
متن کاملAlexander Polynomials of Ribbon Links
We give a simple argument to show that every polynomial f(t) ∈ Z[t] such that f(1) = 1 is the Alexander polynomial of some ribbon 2-knot whose group is a 1-relator group, and we extend this result to links. It is well known that every Laurent polynomial f(t) ∈ Λ = Z[t, t] with f(1) = 1 is the Alexander polynomial of some ribbon 2-knot [7]. (See also [1, 2], for the fibred case, and §7H of [11],...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Knot Theory and Its Ramifications
سال: 2016
ISSN: 0218-2165,1793-6527
DOI: 10.1142/s0218216516500103